Pdf J.h.wilkinson C.reinsch Handbook For Automatic Computation Pdf



Pdf J.h.wilkinson C.reinsch Handbook For Automatic Computation PdfPdf J.h.wilkinson C.reinsch Handbook For Automatic Computation PdfFile

Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems

For


Author:Youcef Saad
Journal:Math. Comp. 42 (1984), 567-588
MSC:Primary 65F15; Secondary 65F50
DOI:https://doi.org/10.1090/S0025-5718-1984-0736453-8
MathSciNet review:736453
Full-text PDFFree Access

Abstract |References |Similar Articles |Additional Information

Abstract: The present paper deals with the problem of computing a few of the eigenvalues with largest (or smallest) real parts, of a large sparse nonsymmetric matrix. We present a general acceleration technique based on Chebyshev polynomials and discuss its practical application to Arnoldi's method and the subspace iteration method. The resulting algorithms are compared with the classical ones in a few experiments which exhibit a sharp superiority of the Arnoldi-Chebyshev approach.

Pdf J.h.wilkinson C.reinsch Handbook For Automatic Computation Pdf Software

  • [1]W.E. Arnoldi, The principle of minimized iterationin the solution of the matrix eigenvalue problem, Quart. Appl. Math.9 (1951), 17–29. MR0042792, https://doi.org/10.1090/S0033-569X-1951-42792-9
  • [2]FriedrichL. Bauer, Das Verfahren der Treppeniteration und verwandteVerfahren zur Lösung algebraischer Eigenwertprobleme, Z. Angew.Math. Phys. 8 (1957), 214–235 (German). MR88049, https://doi.org/10.1007/BF01600502
  • [3]A. Clayton, Further Results on Polynomials Having Least Maximum Modulus Over an Ellipse in the Complex Plane, Technical Report AEEW-7348, UKAEA, 1963.
  • [4]MauriceClint and AlanJennings, A simultaneous iteration method for the unsymmetriceigenvalue problem, J. Inst. Math. Appl. 8 (1971),111–121. MR297116
  • [5]F. D'Almeida, Numerical Study of Dynamic Stability of Macroeconomical Models-Software for MODULECO, Dissertation, Technical Report INPG-University of Grenoble, 1980. (French)
  • [6]E. H. Dowell, 'Nonlinear oscillations of a fluttering plate. II,' AIAA J., v. 5, 1967, pp. 1856-1862.
  • [7]H. C. Elman, Iterative Methods for Large Sparse Nonsymmetric Systems of Linear Equations, Ph.D. thesis, Technical Report 229, Yale University, 1982.
  • [8]H. C. Elman, Y. Saad & P.Saylor, A New Hybrid Chebyshev Algorithm for Solving Nonsymmetric Systems of Linear Equations. Technical Report, Yale University, 1984.
  • [9]L.Meirovitch, A discussion of a paper by K. K. Gupta: “On acombined Sturm sequence and inverse iteration technique for eigenproblemsolution of spinning structures” (Internat. J. Numer. Methods Engrg.7 (1973), no. 4, 509–518), Internat. J. Numer. Methods Engrg.9 (1975), no. 2, 488–491. With a reply byGupta. MR488842, https://doi.org/10.1002/nme.1620090216
  • [10]L.Meirovitch, A discussion of a paper by K. K. Gupta: “On acombined Sturm sequence and inverse iteration technique for eigenproblemsolution of spinning structures” (Internat. J. Numer. Methods Engrg.7 (1973), no. 4, 509–518), Internat. J. Numer. Methods Engrg.9 (1975), no. 2, 488–491. With a reply byGupta. MR488842, https://doi.org/10.1002/nme.1620090216
  • [11]LouisA. Hageman and DavidM. Young, Applied iterative methods, Academic Press, Inc.[Harcourt Brace Jovanovich, Publishers], New York-London, 1981. ComputerScience and Applied Mathematics. MR630192
  • [12]A. Jennings, 'Eigenvalue methods and the analysis of structural vibration,' In Sparse Matrices and Their Uses (I. S. Duff, ed.), Academic Press, New York, 1981, pp. 109-138.
  • [13]A.Jennings and W.J. Stewart, Simultaneous iteration for partial eigensolution ofreal matrices, J. Inst. Math. Appl. 15 (1975),351–361. MR408221
  • [14]WilliamJ. Stewart and AlanJennings, A simultaneous iteration algorithm for realmatrices, ACM Trans. Math. Software 7 (1981),no. 2, 184–198. MR618513, https://doi.org/10.1145/355945.355948
  • [15]A. Jepson, Numerical Hopf Bifurcation, Ph.D. thesis, California Institute of Technology, 1982.
  • [16]SamuelKarlin, Mathematical methods and theory in games, programming, andeconomics, Dover Publications, Inc., New York, 1992. Vol. I: Matrixgames, programming, and mathematical economics; Vol. II: The theory ofinfinite games; Reprint of the 1959 original. MR1160778
  • [17]LindaKaufman, Matrix methods for queueing problems, SIAM J. Sci.Statist. Comput. 4 (1983), no. 3, 525–552. MR723109, https://doi.org/10.1137/0904037
  • [18]L. Kleinrock, Queueing Systems, Vol. 2: Computer Applications, Wiley, New York, London, 1976.
  • [19]CorneliusLanczos, An iteration method for the solution of the eigenvalueproblem of linear differential and integral operators, J. ResearchNat. Bur. Standards 45 (1950), 255–282. MR0042791
  • [20]AlanJ. Laub, Schur techniques for Riccati differential equations,Feedback control of linear and nonlinear systems (Bielefeld/Rome, 1981) Lect. Notes Control Inf. Sci., vol. 39, Springer, Berlin, 1982,pp. 165–174. MR837458, https://doi.org/10.1007/BFb0006827
  • [21]T. A. Manteuffel, An Iterative Method for Solving Nonsymmetric Linear Systems with Dynamic Estimation of Parameters, Ph.D. dissertation. Technical Report UIUCDCS-75-758, University of Illinois at Urbana-Champaign, 1975.
  • [22]ThomasA. Manteuffel, The Tchebychev iteration for nonsymmetric linearsystems, Numer. Math. 28 (1977), no. 3,307–327. MR474739, https://doi.org/10.1007/BF01389971
  • [23]ThomasA. Manteuffel, Adaptive procedure for estimating parameters for thenonsymmetric Tchebychev iteration, Numer. Math. 31(1978/79), no. 2, 183–208. MR509674, https://doi.org/10.1007/BF01397475
  • [24]B. Nour-Omid, B. N. Parlett & R. Taylor, Lanczos Versus Subspace Iteration for the Solution of Eigenvalue Problems, Technical Report UCB/SESM-81/04, Dept. of Civil Engineering, Univ. of California at Berkeley, 1980.
  • [25]BeresfordN. Parlett, The symmetric eigenvalue problem, Prentice-Hall,Inc., Englewood Cliffs, N.J., 1980. Prentice-Hall Series in ComputationalMathematics. MR570116
  • [26]B. N. Parlett & D. Taylor, A Look Ahead Lanczos Algorithm for Unsymmetric Matrices, Technical Report PAM-43, Center for Pure and Applied Mathematics, 1981.
  • [27]TheodoreJ. Rivlin, The Chebyshev polynomials, Wiley-Interscience [JohnWiley & Sons], New York-London-Sydney, 1974. Pure and AppliedMathematics. MR0450850
  • [28]A. Ruhe, Rational Krylov Sequence Methods for Eigenvalue Computations, Technical Report Uminf-97.82, University of Umea, 1982.
  • [29]H. Rutishauser, 'Computational aspects of F. L. Bauer's simultaneous iteration method,' Numer. Math., v. 13, 1969, pp. 4-13.
  • [30]Y. Saad, 'Projection methods for solving Large sparse eigenvalue problems,' in Matrix Pencils, Proceedings (Pitea Havsbad, B. Kagstrom and A. Ruhe, eds.), Lecture Notes in Math., vol. 973, Springer-Verlag, Berlin, 1982, pp. 121-144.
  • [31]Y. Saad, Least Squares Polynomials in the Complex Plane with Applications to Solving Sparse Nonsymmetric Matrix Problems, Technical Report RR-276, Dept. of Computer Science, Yale University, 1983.
  • [32]Y.Saad, Variations on Arnoldi’s method for computingeigenelements of large unsymmetric matrices, Linear Algebra Appl.34 (1980), 269–295. MR591435, https://doi.org/10.1016/0024-3795(80)90169-X
  • [33]G. Sander, C. Bon & M. Geradin, 'Finite element analysis of supersonic panel flutter,' Internal. J. Numer. Methods Engrg., v. 7, 1973, pp. 379-394.
  • [34]D.H. Sattinger, Bifurcation of periodic solutions of theNavier-Stokes equations, Arch. Rational Mech. Anal.41 (1971), 66–80. MR272257, https://doi.org/10.1007/BF00250178
  • [35]E.Seneta, Computing the stationary distribution for infinite Markovchains, Linear Algebra Appl. 34 (1980),259–267. MR591434, https://doi.org/10.1016/0024-3795(80)90168-8
  • [36]D. C. Smolarski, Optimum Semi-Iterative Methods for the Solution of Any Linear Algebraic System with a Square Matrix, Ph.D. Thesis, Technical Report UIUCDCS-R-81-1077, University of Illinois at Urbana-Champaign, 1981.
  • [37]D. C. Smolarski & P. E. Saylor, Optimum Parameters for the Solution of Linear Equations by Richardson Iteration, 1982. Unpublished Manuscript.
  • [38]G.W. Stewart, Simultaneous iteration for computing invariantsubspaces of non-Hermitian matrices, Numer. Math. 25(1975/76), no. 2, 123–136. MR400677, https://doi.org/10.1007/BF01462265
  • [39]G. W. Stewart, SRRIT-A FORTRAN Subroutine to Calculate the Dominant Invariant Subspaces of a Real Matrix, Technical Report TR-514, Univ. of Maryland, 1978.
  • [40]D. Taylor, Analysis of the Look-Ahead Lanczos Algorithm, Ph.D. thesis, Technical Report, Univ. of California, Berkeley, 1983.
  • [41]J.H. Wilkinson, The algebraic eigenvalue problem, ClarendonPress, Oxford, 1965. MR0184422
  • [42]Handbook for automatic computation. Vol. II, Springer-Verlag, NewYork-Heidelberg, 1971. Linear algebra; Compiled by J. H. Wilkinson and C.Reinsch; Die Grundlehren der Mathematischen Wissenschaften, Band 186. MR0461856
  • [43]H.E. Wrigley, Accelerating the Jacobi method for solving simultaneousequations by Chebyshev extrapolation when the eigenvalues of the iterationmatrix are complex, Comput. J. 6 (1963/64),169–176. MR152115, https://doi.org/10.1093/comjnl/6.2.169

Full-text PDF Free Access. Abstract References. Handbook for automatic computation. II, Springer-Verlag, New York-Heidelberg, 1971. Linear algebra; Compiled by J. Wilkinson and C. Reinsch; Die Grundlehren der Mathematischen Wissenschaften, Band 186. Wilkinson Publisher: Springer ISBN: 146 Size: 24.48 MB Format: PDF, Docs Category: Computers Languages: en Pages: 441 View: 5839 Book Description: The development of the internationally standardized language ALGOL has made it possible to prepare procedures which can be used without modification whenever a computer with an ALGOL translator is available. Full-text PDF Free Access. Handbook for automatic computation. II, Springer-Verlag, New York-Heidelberg, 1971. Linear algebra; Compiled by J. Linear algebra; Compiled by J. Wilkinson and C. Reinsch; Die Grundlehren der Mathematischen Wissenschaften, Band 186. MR 0461856 43 H. Wrigley, Accelerating the Jacobi method for solving simultaneous equations by Chebyshev extrapolation when the eigenvalues of the iteration matrix are complex, Comput. Advancing research. Creating connections. ISSN 1088-6842(online) ISSN 0025-5718(print).

Quart Appl. Math., v. 9, 1951, pp. 17-29. MR 0042792 (13:163e)
[2]
F. L. Bauer, 'Das Verfahren der Treppeniteration und Verwandte Verfahren zur Losung Algebraischer Eigenwertprobleme,' Z. Angew. Math. Phys., v. 8, 1957, pp. 214-235. MR 0088049 (19:461b)
[3]
A. Clayton, Further Results on Polynomials Having Least Maximum Modulus Over an Ellipse in the Complex Plane, Technical Report AEEW-7348, UKAEA, 1963.
[4]
M Clint & A. Jennings, 'The evaluation of eigenvalues and eigenvectors of real symmetric matrices by simultaneous iteration method,' J. Inst. Math. Appl., v. 8, 1971, pp. 111-121. MR 0297116 (45:6174)
[5]
F. D'Almeida, Numerical Study of Dynamic Stability of Macroeconomical Models-Software for MODULECO, Dissertation, Technical Report INPG-University of Grenoble, 1980. (French)
[6]
E. H. Dowell, 'Nonlinear oscillations of a fluttering plate. II,' AIAA J., v. 5, 1967, pp. 1856-1862.
[7]
H. C. Elman, Iterative Methods for Large Sparse Nonsymmetric Systems of Linear Equations, Ph.D. thesis, Technical Report 229, Yale University, 1982.
[8]
H. C. Elman, Y. Saad & P.Saylor, A New Hybrid Chebyshev Algorithm for Solving Nonsymmetric Systems of Linear Equations. Technical Report, Yale University, 1984.
[9]
K. K. Gupta, 'Eigensolution of damped structual systems,' Internat. J. Numer. Methods Engrg., v. 8, 1974, pp. 877-911. MR 0488842 (58:8347a)
[10]
K. K. Gupta, 'On a numerical solution of the supersonic panel flutter eigenproblem,' Internat. J. Numer. Methods Engrg., v. 10, 1976, pp. 637-645. MR 0488844 (58:8347c)
[11]
A. L. Hageman & D. M. Young, Applied Iterative Methods, Academic Press, New York, 1981. MR 630192 (83c:65064)
[12]
A. Jennings, 'Eigenvalue methods and the analysis of structural vibration,' In Sparse Matrices and Their Uses (I. S. Duff, ed.), Academic Press, New York, 1981, pp. 109-138.
[13]
A. Jennings & W. J. Stewart, 'Simultaneous iteration for partial eigensolution of real matrices,' J. Math. Inst. Appl., v. 15, 1980, pp. 351-361. MR 0408221 (53:11986)
[14]
A. Jennings & W. J. Stewart, 'A simultaneous iteration algorithm for real matrices,' ACM Trans. Math. Software, v. 7, 1981, pp. 184-198. MR 618513 (83d:65118)
[15]
A. Jepson, Numerical Hopf Bifurcation, Ph.D. thesis, California Institute of Technology, 1982.
[16]
S. Karlin, Mathematical Methods and Theory in Games, Programming, and Economics, Vol. I, Addison-Wesley, Reading, Mass., 1959. MR 1160778 (93a:90001)
[17]
L. Kaufman, Matrix Methods of Queueing Problems, Technical Report TM-82-11274-1, Bell Laboratories, 1982. MR 723109 (84k:60127)
[18]
L. Kleinrock, Queueing Systems, Vol. 2: Computer Applications, Wiley, New York, London, 1976.
[19]
C. Lanczos, 'An iteration method for the solution of the eigenvalue problem of linear differential and integral operators,' J. Res. Nat. Bur. Standards, v. 45, 1950, pp. 255-282. MR 0042791 (13:163d)
[20]
A. J. Laub, Schur Techniques in Invariant Imbedding Methods for Solving Two Point Boundary Value Problems, 1982. (To appear.) MR 837458
[21]
T. A. Manteuffel, An Iterative Method for Solving Nonsymmetric Linear Systems with Dynamic Estimation of Parameters, Ph.D. dissertation. Technical Report UIUCDCS-75-758, University of Illinois at Urbana-Champaign, 1975.
[22]
T. A. Manteuffel, 'The Tchebychev iteration for nonsymmetric linear systems,' Numer. Math., v. 28, 1977, pp. 307-327. MR 0474739 (57:14373)
[23]
T. A. Manteuffel, 'Adaptive procedure for estimation of parameter for the nonsymmetric Tchebychev iteration,' Numer. Math., v. 28, 1978, pp. 187-208. MR 509674 (80d:65047)
[24]
B. Nour-Omid, B. N. Parlett & R. Taylor, Lanczos Versus Subspace Iteration for the Solution of Eigenvalue Problems, Technical Report UCB/SESM-81/04, Dept. of Civil Engineering, Univ. of California at Berkeley, 1980.
[25]
B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, N. J., 1980. MR 570116 (81j:65063)
[26]
B. N. Parlett & D. Taylor, A Look Ahead Lanczos Algorithm for Unsymmetric Matrices, Technical Report PAM-43, Center for Pure and Applied Mathematics, 1981.
[27]
T. J. Rivlin, The Chebyshev Polynomials, Wiley, New York, 1976. MR 0450850 (56:9142)
[28]
A. Ruhe, Rational Krylov Sequence Methods for Eigenvalue Computations, Technical Report Uminf-97.82, University of Umea, 1982.
[29]
H. Rutishauser, 'Computational aspects of F. L. Bauer's simultaneous iteration method,' Numer. Math., v. 13, 1969, pp. 4-13.
[30]
Y. Saad, 'Projection methods for solving Large sparse eigenvalue problems,' in Matrix Pencils, Proceedings (Pitea Havsbad, B. Kagstrom and A. Ruhe, eds.), Lecture Notes in Math., vol. 973, Springer-Verlag, Berlin, 1982, pp. 121-144.
[31]
Y. Saad, Least Squares Polynomials in the Complex Plane with Applications to Solving Sparse Nonsymmetric Matrix Problems, Technical Report RR-276, Dept. of Computer Science, Yale University, 1983.
[32]
Y. Saad, 'Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices,' Linear Algebra Appl., v. 34, 1980, pp. 269-295. MR 591435 (81m:65055)
[33]
G. Sander, C. Bon & M. Geradin, 'Finite element analysis of supersonic panel flutter,' Internal. J. Numer. Methods Engrg., v. 7, 1973, pp. 379-394.
[34]
D. H. Sattinger, 'Bifurcation of periodic solutions of the Navier Stokes equations,' Arch. Rational Mech. Anal., v. 41, 1971, pp. 68-80. MR 0272257 (42:7138)
[35]
E. Seneta, 'Computing the stationary distribution for infinite Markov chains,' in Large Scale Matrix Problems (A. Björck, R. J. Plemmons & H. Schneider, eds.), Elsevier, North-Holland, New York, 1981, pp. 259-267. MR 591434 (82a:60103)
[36]
D. C. Smolarski, Optimum Semi-Iterative Methods for the Solution of Any Linear Algebraic System with a Square Matrix, Ph.D. Thesis, Technical Report UIUCDCS-R-81-1077, University of Illinois at Urbana-Champaign, 1981.
[37]
D. C. Smolarski & P. E. Saylor, Optimum Parameters for the Solution of Linear Equations by Richardson Iteration, 1982. Unpublished Manuscript.
[38]
G. W. Stewart, 'Simultaneous iteration for computing invariant subspaces of non-Hermitian matrices,' Numer. Math., v. 25, 1976, pp. 123-136. MR 0400677 (53:4508)
[39]
G. W. Stewart, SRRIT-A FORTRAN Subroutine to Calculate the Dominant Invariant Subspaces of a Real Matrix, Technical Report TR-514, Univ. of Maryland, 1978.
[40]
D. Taylor, Analysis of the Look-Ahead Lanczos Algorithm, Ph.D. thesis, Technical Report, Univ. of California, Berkeley, 1983.
[41]
J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965. MR 0184422 (32:1894)
[42]
J. H. Wilkinson & C. Reinsch, Handbook for Automatic Computation, Vol. II, Linear Algebra, Springer-Verlag, New York, 1971. MR 0461856 (57:1840)
[43]
H. E. Wrigley, 'Accelerating the Jacobi method for solving simultaneous equations by Chebyshev extrapolation when the eigenvalues of the iteration matrix are complex,' Comput. J., v. 6, 1963, pp. 169-176. MR 0152115 (27:2095)

Retrieve articles in Mathematics of Computation with MSC: 65F15,65F50

Pdf J.h.wilkinson C.reinsch Handbook For Automatic Computation Pdf Online

Retrieve articles in all journals with MSC: 65F15,65F50

Automatic

Additional Information
DOI:https://doi.org/10.1090/S0025-5718-1984-0736453-8
Article copyright:© Copyright 1984American Mathematical Society